Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar Ph.D. Entrance Test Syllabus Computer Engineering

Paper I		Research Methodology	
Unit – I	:	Research Problems and Research Design	
		Meaning of research, types of research, steps in involved in research process, criteria of	
		good research, importance of ethics in research, codes and policies for research ethics.	
		Selection of research problem, steps involved in defining research problem, need for	
		research design, types of research designs, basic principles of experimental design, formal	
		and informal experimental design.	
Unit – II	:	Sampling Design	
		Need for sampling, steps in sampling design, different types of sampling designs,	
		sampling distributions, concept of central limit and standard error, sources of errors	
		population mean and proportion, sample size calculations, tests of measurements for	
		validity, reliability and practicality	
Unit –III	: Data Collection, Processing and Analysis		
		Meaning and Need for Data, Primary and Secondary Data, Sources of Secondary Data	
		Documentary Sources of Data, Electronic Sources, Precautions in Using Secondary Data	
		Merits and Limitations of Secondary Data, Methods for collection of Data, Data	
4		processing operations, statistics in research, confidence level, measures of centra	
		tendency, Spearman's and Pearson's coefficient of correlation, simple & multiple	
		regression analysis, analysis of variance, Meaning and History of Probability, Probability	
,		Rules, Bayes' Theorem, Types of Probability Distribution, Random Variables, Discret	
		Probability Distribution, Binomial Distribution, Poisson Distribution, Continuou	
		Probability Distribution, Normal Distribution	
Unit – IV	:		
		Hypothesis- Meaning of Hypothesis, Types of Hypothesis, Criteria for Workabl	
		Hypothesis, Stages in Hypothesis, Testing of Hypothesis, Uses of Hypothesis, Research	
	8		
	5	Hypothesis, Stages in Hypothesis, Testing of Hypothesis, Uses of Hypothesis, R Design-Functions of Research Design, Components of a Research Design	

		Estimation, Confidence Limits, Confidence Interval and Confidence Co-efficient, Testing
		Hypothesis, Level of Significance, Type-I and Type-II Errors and Power of a Test, Two-
		tailed and One-tailed Tests, Student's t-distribution, t-test, Chi-Square Test, significance
		of research report writing, types of reports, structure of the research report, steps in report
		writing, precautions and ethics in writing report.
Unit – V	:	Intellectual Property Rights
-		Origin and evolution of IPR to its present form and use, Different Tools of IPR and what
		is the nature of these rights, Balancing Rights and Responsibilities, Societal implications
		of IPR, Concept of inventions/discoveries, patents protect, benchmarks for patentability
		of inventions, Exceptions to patentability, Patenting issues in computer based inventions,
		process to apply for patents in India and in other countries, steps to granting of a patent,
×		Opposing grant of a patent, term of a patent, rights of a patent holder, challenging validity
		of a patent licensing of patent rights, using patent rights in the market place.
Reference	:	1. Research Methodology: Methods and Techniques, Second Edition, New Age
Books		International publishers by C.R. Kothari
DUUKS		2. The Craft of Research by Wyne C. Booth, Colomb, William, University
		3. Research Methods and Statistics, Pearson Education by Bernard C. Beins & Maureen
		A McCarthy
		4. Intellectual Property Rights-Unleashing the Knowledge Economy, Tata Mc GrawHill,
		by Ganguli Prabuddha

PAZ3

	Paper - II	
Sr. No.	Chapter Name	
1	Unit - I	Data Structure and Algorithm, Programing Languages
		Complexity of algorithm, analyzing algorithm, Asymptotic notations
		Linear data structures – Array, stack, queue, Linked list
		Non-linear data structures – Tree, Graph
		Searching, Sorting and hashing algorithms
		Language Design and Translation Issues: Programming Language Concepts, Paradigms and Models, Programming Environments, Virtual Computers and Binding Times, Programming Language Syntax, Stages in Translation, Formal Transition Models.
		Reference books
		 Data structures using C : Tenenbaum, Aaron M Concepts of Programming Languages, Robert W. Sebesta
2	Unit- II	Computer Network, Cryptography and Network Security
		Overview of Networking: Definition, uses, and history of computer networks, Network Models: OSI and TCP/IP models, Types of Networks: LAN, WAN, MAN, PAN, Network Topologies: Star, Ring, Bus, Mesh, Hybrid, Networking Devices: Routers, Switches, Hubs, Bridges, and Gateways. Transmission Media: Wired (Coaxial, Twisted Pair, Fiber Optics) and Wireless (Wi-Fi, Bluetooth), Switching Techniques: Circuit, Packet, and Message Switching, Routing Algorithms: Distance Vector, Link State, Path Vector, RIP, OSPF, BGP, Transport Layer Protocols: TCP, UDP, Flow Control, Congestion Control, Application Layer Protocols: HTTP, FTP, SMTP, DNS, DHCP, Classical Cryptography: Caesar Cipher, Monoalphabetic Cipher, Vigenère Cipher, Symmetric Key Cryptography: DES, 3DES, AES, Block Cipher Modes of Operation, Asymmetric Key Cryptography: RSA, Diffie-Hellman, ElGamal., Cryptographic Hash

I.		Page 4 of 7
2		 S. Russel and P. Norvig. Artificial Intelligence: A Modern Approach (Third Edition), Prentice Hall, 2009 T. Mitchell. Machine Learning. McGraw-Hill, 1997.
		Reference books:
		Particle Swarm and Ant Colony Optimization linear regression, logistic regression ML Techniques overview, Validation Techniques (Cross-Validations) Dimensionality reduction, Principal components analysis (Eigen values, Eigen vectors, Orthogonality) Clustering - Distance measures, Different clustering methods (Distance, Density, Hierarchical), Iterative distance-based clustering; Dealing with continuous, categorical values in K-Means, Constructing a hierarchical cluster, K-Medoids, k-Mode and density- based clustering, Measures of quality of clustering Classification - Naïve Bayes Classifier, K-Nearest Neighbors, Support Vector Machines, Decision Trees, Ensembles methods Association Rule mining
		AI and Machine Learning, Problem Solving: Uninformed search, Informed search, local Search, Online search; Knowledge and Reasoning: Propositional and Predicate Calculus, Semantic Nets, Frames, Scripts, Probabilistic Reasoning Learning: Introduction to machine learning paradigms: unsupervised, supervised, reinforcement learning, Naive Bayes, Decision Tree, Fundamental of Neural Networks and Deep Learning Evolutionary Computation: Genetic algorithms, Multi objective optimization, Differential Evolution,
3	Unit - III	 Computer Network: Tenenbaum, Andrew S Cryptography and Network Security: Principles and Practice, by William Stallings. (3rd edition) AI and Machine Learning, IP
-		Reference books
		Functions: MD5, SHA-1, SHA-256, HMAC, Digital Signatures: RSA, DSA, Elliptic Curve Digital Signature Algorithm (ECDSA), Public Key Infrastructure (PKI): Certificates, Certificate Authorities, Trust Models.

		3. A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall, 1988
		Image Processing Introduction to Digital Image Processing & Applications, Sampling, Quantization, Basic Relationship between Pixels, Imaging Geometry, Image Transforms, Image Enhancement, Image Restoration, Image Segmentation, Morphological Image Processing, Shape Representation and Description, Object Recognition and Image Understanding, Texture Image Analysis, Motion Picture Analysis, Image Data Compression
		 Reference books 1. Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, Pearson 2. Anil K. Jain, Fundamentals of Digital Image Processing, Prentice
4	Unit - VI	Hall Computer Architecture and Operating System
		Basics of Computer Architecture: Definitions, Historical Development, Von Neumann Architecture: Components and Operation, Performance Metrics: Throughput, Latency, CPI, MIPS, Instruction Set Architecture (ISA): RISC vs. CISC, Addressing Modes, Instruction Formats, Data Representation: Binary, Hexadecimal, Floating Point, Character Encoding, CPU Organization: ALU, Control Unit, Registers, Buses, Instruction Cycle: Fetch, Decode, Execute, Memory Access, Write Back, Pipelining: Concepts, Hazards (Data, Control, Structural), Hazard Mitigation Techniques, Superscalar and VLIW Architectures: Out-of-Order Execution, Speculative Execution, Multithreading: Simultaneous Multithreading (SMT), Hyper-Threading, CPU Scheduling: Scheduling Criteria, Algorithms (FCFS, SJF, Priority, Round-Robin, Multilevel Queue),
		Process Synchronization: Critical Section Problem, Semaphores, Mutexes, Monitors, Deadlocks: Conditions, Deadlock Prevention, Avoidance (Banker's Algorithm), Detection, Recovery, Inter-process

(fz

Unit - VDatabase System Concepts and Architecture: Data Models, Schemas, and Instances; Three-Schema Architecture and Data Independence; Database Languages and Interfaces; Centralized and Client/Server Architectures for DBMS.Data Modeling: Entity-Relationship Diagram, Relational Model - Constraints, Languages, Design, and Programming, Relational Database Schemas, Update Operations and Dealing with Constraint Violations; Relational Algebra and Relational Calculus; Codd Rules.SQL: Data Definition and Data Types; Constraints, Queries, Insert, Delete, and Update Statements; Views, Stored Procedures and Functions; Database Triggers, SQL Injection.Normalization for Relational Databases: Functional Dependencies and Normalization; Algorithms for Query Processing and Optimization; Transaction Processing, Concurrency Control Techniques, Database			Communication (IPC): Pipes, Message Queues, Shared Memory,
1.Computer organization and architecture by William Stallings. 2.2.Operating System Concepts" by Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne5DBMS and Data Science.5Database System Concepts and Architecture: Data Models, Schemas, and Instances; Three-Schema Architecture and Data Independence; Database Languages and Interfaces; Centralized and Client/Server Architectures for DBMS.Data Modeling:Entity-Relationship Diagram, Relational Model - Constraints, Languages, Design, and Programming, Relational Database Schemas, Update Operations and Dealing with Constraint Violations; Relational Algebra and Relational Calculus; Codd Rules.SQL:Data Definition and Data Types; Constraints, Queries, Insert, Delete, and Update Statements; Views, Stored Procedures and Functions; Database Triggers, SQL Injection.Normalization for Relational Databases: Functional Dependencies and Normalization; Algorithms for Query Processing and Optimization; Transaction Processing, Concurrency Control Techniques, Database			Sockets.
2. Operating System Concepts" by Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne5DBMS and Data Science.5Database System Concepts and Architecture: Data Models, Schemas, and Instances; Three-Schema Architecture and Data Independence; Database Languages and Interfaces; Centralized and Client/Server Architectures for DBMS.Data Modeling: Entity-Relationship Diagram, Relational Model - Constraints, Languages, Design, and Programming, Relational Database Schemas, Update Operations and Dealing with Constraint Violations; Relational Algebra and Relational Calculus; Codd Rules.SQL: Data Definition and Data Types; Constraints, Queries, Insert, Delete, and Update Statements; Views, Stored Procedures and Functions; Database Triggers, SQL Injection.Normalization for Relational Databases: Functional Dependencies and Normalization; Algorithms for Query Processing and Optimization; Transaction Processing, Concurrency Control Techniques, Database			Refernce Book
2. Operating System Concepts" by Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne5DBMS and Data Science.5Database System Concepts and Architecture: Data Models, Schemas, and Instances; Three-Schema Architecture and Data Independence; Database Languages and Interfaces; Centralized and Client/Server Architectures for DBMS.Data Modeling: Entity-Relationship Diagram, Relational Model - Constraints, Languages, Design, and Programming, Relational Database Schemas, Update Operations and Dealing with Constraint Violations; Relational Algebra and Relational Calculus; Codd Rules.SQL: Data Definition and Data Types; Constraints, Queries, Insert, Delete, and Update Statements; Views, Stored Procedures and Functions; Database Triggers, SQL Injection.Normalization for Relational Databases: Functional Dependencies and Normalization; Transaction Processing, Concurrency Control Techniques, Database			
Unit - VDatabase System Concepts and Architecture: Data Models, Schemas, and Instances; Three-Schema Architecture and Data Independence; Database Languages and Interfaces; Centralized and Client/Server Architectures for DBMS.Data Modeling: Entity-Relationship Diagram, Relational Model - Constraints, Languages, Design, and Programming, Relational Database Schemas, Update Operations and Dealing with Constraint Violations; Relational Algebra and Relational Calculus; Codd Rules.SQL: Data Definition and Data Types; Constraints, Queries, Insert, Delete, and Update Statements; Views, Stored Procedures and Functions; Database Triggers, SQL Injection.Normalization for Relational Databases: Functional Dependencies and Normalization; Algorithms for Query Processing and Optimization; Transaction Processing, Concurrency Control Techniques, Database	÷		2. Operating System Concepts" by Abraham Silberschatz, Peter
 and Instances; Three-Schema Architecture and Data Independence; Database Languages and Interfaces; Centralized and Client/Server Architectures for DBMS. Data Modeling: Entity-Relationship Diagram, Relational Model - Constraints, Languages, Design, and Programming, Relational Database Schemas, Update Operations and Dealing with Constraint Violations; Relational Algebra and Relational Calculus; Codd Rules. SQL: Data Definition and Data Types; Constraints, Queries, Insert, Delete, and Update Statements; Views, Stored Procedures and Functions; Database Triggers, SQL Injection. Normalization for Relational Databases: Functional Dependencies and Normalization; Algorithms for Query Processing and Optimization; Transaction Processing, Concurrency Control Techniques, Database 	5		DBMS and Data Science.
Constraints, Languages, Design, and Programming, Relational Database Schemas, Update Operations and Dealing with Constraint Violations; Relational Algebra and Relational Calculus; Codd Rules. SQL: Data Definition and Data Types; Constraints, Queries, Insert, Delete, and Update Statements; Views, Stored Procedures and Functions; Database Triggers, SQL Injection. Normalization for Relational Databases: Functional Dependencies and Normalization; Algorithms for Query Processing and Optimization; Transaction Processing, Concurrency Control Techniques, Database		Unit - V	and Instances; Three-Schema Architecture and Data Independence; Database Languages and Interfaces; Centralized and Client/Server
Delete, and Update Statements; Views, Stored Procedures and Functions; Database Triggers, SQL Injection. Normalization for Relational Databases: Functional Dependencies and Normalization; Algorithms for Query Processing and Optimization; Transaction Processing, Concurrency Control Techniques, Database			Constraints, Languages, Design, and Programming, Relational Database Schemas, Update Operations and Dealing with Constraint
Normalization; Algorithms for Query Processing and Optimization; Transaction Processing, Concurrency Control Techniques, Database			Delete, and Update Statements; Views, Stored Procedures and
Warehousing and Data Mining: Data Modeling for Data Warehouses, Concept Hierarchy, OLAP and OLTP; Association Rules, Classification, Clustering, Regression, Support Vector Machine, K- Nearest Neighbour, Hidden Markov Model, Summarization, Dependency Modeling, Link Analysis, Sequencing Analysis, Social Network Analysis. Big Data Systems: Big Data Characteristics, Types of Big Data, Big Data Architecture, Introduction to Map- Reduce and Hadoop; Distributed File System, HDFS. NOSQL: NOSQL and Query Optimization; Different NOSQL Products, Querying and Managing NOSQL; Indexing and Ordering Data Sets; NOSQL in Cloud. Data Science Information Gain and Entropy, Probability Theory, Probability Types, Probability distribution			Normalization; Algorithms for Query Processing and Optimization; Transaction Processing, Concurrency Control Techniques, Database Recovery Techniques, Object and Object-Relational DatabasesData Warehousing and Data Mining: Data Modeling for Data Warehouses, Concept Hierarchy, OLAP and OLTP; Association Rules, Classification, Clustering, Regression, Support Vector Machine, K- Nearest Neighbour, Hidden Markov Model, Summarization, Dependency Modeling, Link Analysis, Sequencing Analysis, Social Network Analysis. Big Data Systems: Big Data Characteristics, Types of Big Data, Big Data Architecture, Introduction to Map- Reduce and Hadoop; Distributed File System, HDFS. NOSQL: NOSQL and Query Optimization; Different NOSQL Products, Querying and Managing NOSQL; Indexing and Ordering Data Sets; NOSQL in Cloud. Data Science Information Gain and Entropy, Probability Theory, Probability Types, Probability distribution
functions, Bayes Theorem, Inferential Statistics, data retrieval, data			functions, Bayes Theorem, Inferential Statistics, data retrieval, data

analysis, Linear Regression, Logistic Regression, Multinomial Logistic Regression, Decision Trees, Naive Bays, SVM, Clustering.

Reference books

Fundamentals of Data Science, Dr. Aijaz Ali Khan, Anita Rani Mehta, Vandana Ahuja, Dr. S. Thilagamani

Database System The Complete Book by Hector Garcia- Monila, Jennifer Widom and Jeffrey D. Ullman.